Air circuit breakers DH series

Description

The newly designed DH series air circuit breakers have excellent features as follows:

- The height and depth dimensions are identical in all sizes up to 3200AF
- Incresed accessibility from the front enhances easy of installation, operation and maintenance
- No extra arc space required, This will assist in minimizing switchboard height and costs
- Very fast interruption by double break system
- Selective trip protective coordination functions

Selection guide

Series			DH series
Frame size			800, 1250, 1600, 2000, 2500, 3200, 4000, 5000, 6300
No. of poles			3, 4
Installation		Fixed	Available (Up to 3200AF)
		Draw-out	Available
Closing mechanism			Manual spring, motor spring
Tripping mechanism			Shunt trip, undevervoltage trip
Overcurrent protection device	Characteristics	L-characteristic	Available
		R-characteristic	Available
	Protection function *	Long time delay Short time delay Instantanous	Available
		Pre-trip alarm	Available
		Ground fault	Available
		Preverse power	Available
		N -phase protection	Available
		Contact temp.monitoring	Available

* Availability of protective function differs depending on the OCR type.
- Comparison of breaking capacity

Rated current (A)			800A	1250A	1600A	2000A	2500A	3200A	4000A	5000A	6300A
Rated breaking capacity (kA. sym.)/ Rated making current (kA. peak)	Rated voltage 690V AC	DH \square	50/105				65/143		75/165	85/187	
		$\mathrm{DH} \square \mathrm{H}$		55/121							
		DH $\square \mathbf{P}$			85/187						
	Rated voltage 440V AC	DH \square	65/143				85/187		100/220	120/264	
		$\mathrm{DH} \square \mathrm{H}$		80/176							
		$\mathbf{D H} \square \mathbf{P}$			100/230						

Standards (Conform to the following standards)

-Conforming to

IEC60947-2
EN60947-2
AS3947-2
NEMA PUB No. SG3
ANSI C37.13
JIS C 8201-2-1
JEC 160

Air Circuit Breakers
 DH series

Features

Standardized basic dimenstions

The height and depth dimensions are identical in all sizes to 3200A. There are four common widths or frame size, from 8002000A , from 2500-3200A, 4000A and 5000-6300A for the standard series. The panel cutout size is the same for all types of DH series ACB, which makes it easy to arrange the ACBs in switchboards.
Maximum power from minimum volume was central to the design specification. With a depth of 290 mm for the fixed type and 345 mm for draw-out, it is one of the smallest ACBs in the world.
ACBs with front connections are available off-the-shelf.
Front connections are especially suitable for smaller-depth switchboards.

Geared toward the smallest depth in the world

Direct connection of the isolating main contacts to the hinges of the fixed main contacts eliminates the need for intermediate conductors. Allowing the DH series ACBs have the world's smallest depth resulting in space saving in switchboards.

More than twenty design patents have been registered for the DH series ACB.

Increased accessibility from the front

It enhances ease of installation, operation, and maintenance.The double insulated design ensures that most accessories can be safely and easily installed by the user. Control, auxiliary and position switch terminals are mounted at the front on the ACB body for easy access. Due to the increased level of harmonics within the distribution network, the neutral phase is fully rated as standard.

No extra arc space required, vertical stacking permitted The DH series ACB dissipates all arc energy within its unique "Double Break" arc chamber.
The internal energy dissipation within the ACB allows the clearance distance of the ACB to nearby earthed metal to be zero. This will assist in minimizing switchboard height and costs.

Very fast interruption by "Double Break" system The unique "Double Break" main contact system ensures extremely fast interruption of short-circuit currents and substantially reduces main contact wear. The internally symmetrical "Double Break" structure allows reverse power connection.

Enhanced selectivity

Fuji is so concerned about selectivity that all our protection relays have 'LSI' characteristics as standard.

This provides an adjustable time delay on overload (L) and also the I t t ramp characteristic (S).
As shown, these are essential to provide selectivity when grading with other protective devices such as downstream fuses and upstream relays.
The standard 'LSI' curve provides more than five million combinations of unique time current characteristics. Zone selective interlocking is available to provide zero time delay selectivity.
As the rated breaking capacity is identical to the rated shorttime withstand current full selectivity can be achieved.

No clamp screws used for the main circuit contact units There are no clamp screws or flexible leads in the main circuit contact units.
This substantially enhances the durability of the main circuit contact units and improves the reliability in ON-OFF operation

Replacement of the main contacts

The fixed and moving main contacts can easily be replaced in the field, thus prolonging the life on the circuit breaker. Changing each pole takes around 15 minutes.

Note: If the ACB is DH-H type or DH-P type without INST trip/MCR function, the rated breaking capacity will decrease down to the rated latching current.

Air Circuit Breakers
 DH series
 Features

■ DH seriesprovides positive protection for electric power systems.

DH series is equipped with an RMS sensing over-current release (OCR) having a wide range of protection functions and capabilities.

- Optimum protective coordination

Why use a separate panel mounted protection relay when you can have all the benefits of I.D.M.T. protection integral to the ACB?

Fuji ACB is available with a choice of flexible protection curves to assist in selectivity applications.

All these curves are user definable and comply with IEC 60255-3. Standard transformer and generator protection characteristics are also available.

AGR-L Industrial \& transformer protection
AGR-R Characteristics to IEC 60255-3
AGR-S Generator protection

Inverse Definite Minimum Time (I.D.M.T.)
(S.I. Standard Inverse
V.I. Very Inverse
E.I. Extremely Inverse

Standard OCR with adjustment dial Type AGR-11B

Standard OCR with LCD Type AGR-21B,22B

Enhanced OCR with LCD Type AGR-31B

- Overload protection

Adjustable from 40-100\% of rated current. True r.m.s detection up to the 19th harmonic, a distant vision for the competition who rarely see past the 7th. Neutral protection for all those Triple-N harmonics, such as 3rd, 9th and 15th. Also in case we forgot to mention, a "Thermal memory" as standard!

- Two channel pre-trip alarm function (S-characteristic) *1 This function can be used to monitor and switch on additional power backup to feed critical circuits. For example, the function can be set so that when a pre-trip alarm is activated, an emergency generator starts to ensure a constant supply. This feature is only available on some AGR21 OCR models with a generator "S" characteristic.

- N-phase protection function (optional)

In 3-phase, 4-wire systems that contain harmonic distortion, the 3rd harmonic may cause large currents to flow through the neutral conductor. The N -phase protection function prevents the neutral conductor from sustaining damage or burnout due to these large currents. Available in all OCRs except for generator " S " characteristic types.

- Reverse power trip function(S-characteristic) *1
(The first-ever feature for ACBs)
This feature provides additional protection when paralleling generators. The AGR21 OCR for generator protection with the reverse power trip function, negates the need for installation and wiring in an external reverse power relay. This feature is available using an AGR21 OCR with a generator "S" type characteristic only.

- Ground fault trip function

This function eliminates external relays to provide a ground fault protection to TN-C or TN-S power distribution systems on the load side. Ground fault protection on the line side is also available as an option.

- Reverse phase protection function

This function detects the negative-phase current occurring due to reverse phase or phase loss and precents burnout of a motor or damage to equipment.

- Contact temperature monitoring function (optional) *2 This function monitors the temperature of the ACBs main contacts. An alarm indicates when the temperature exceeds 155C. Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programs.

- Advanced L.C.D display, Over Current Relay

The AGR-31B OCR comes standard with an LCD display. It can monitor and indicate phase currents, voltages, power, energy, power factor, frequency, and more.
For features, refer to page 06/185.

[^0]
Type number nomenclature

Air Circuit Breakers DH series

\square Specifications, standard types

Frame size	800A		1250A		1600A		2000A		2500A		3200A		4000A		5000A		6300A							
Basic type	DH08 $\square^{\text {a }}$		DH12 \square		DH16■		DH20-		DH25 $\square^{\text {■ }}$		DH30■!		DH40■		DH50■		DH60■■							
No. of poles *3*4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4						
Rated current (A) ${ }^{* 1}+2$ (Max.) IEC, EN, AS, JIS NEMA, ANSI Ral	$\begin{aligned} & 800 \\ & 800 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1250 \\ & 1250 \\ & \hline \end{aligned}$		$\begin{array}{r} 1600 \\ 1540 \\ \hline \end{array}$		$\begin{aligned} & \hline 2000 \\ & 2000 \\ & \hline \end{aligned}$		$\begin{array}{r} 2500 \\ 2500 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 3200 \\ 3200 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 4000 \\ 3700 \\ \hline \end{array}$		5000		$\begin{array}{\|l\|l} \hline 6300 \\ \hline \end{array}$							
Rated current of the neutral pole (A)	800		1250		1600		2000		2500		3200		4000		5000		6300							
Rated primary current of overcurrent tripping device (Ict) (A) (For general feeder circuit use)	$\begin{aligned} & 200 \\ & 400 \\ & 800 \end{aligned}$		$\begin{array}{r} 400 \\ 800 \\ 1250 \\ 1600 \end{array}$		$\begin{array}{\|r} \hline 400 \\ 800 \\ 1250 \\ 1600 \\ 2000 \end{array}$		$\begin{array}{r} 400 \\ 800 \\ 1250 \end{array}$		2500		3200		4000		5000		6300							
Rated insulation voltage (U_{i}) $\mathrm{V}, 50 / 60 \mathrm{~Hz}$) ${ }^{* 5}$	1000																							
Rated operational voltage (U_{e})(V, $\left.\mathrm{V}, 5 / 60 \mathrm{~Hz}\right)^{* 6}$	690																							
$\begin{aligned} & \hline \text { Rated breaking capacity (kA, sym.)/ } \\ & \text { Rated making current (kA, peak) } \\ & \text { IEC, EN, AS, JIS [lcs=lcu] } 690 \mathrm{~V} \text { AC *7 } \\ & 500 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	50/105 65/143 65/143								$\begin{aligned} & 65 / 143 \\ & 85 / 187 \\ & 85 / 187 \end{aligned}$				$\begin{aligned} & 75 / 165 \\ & -100 / 220 \end{aligned}$		$\begin{array}{\|l\|} \hline 85 / 187 \\ \hline 120 / 264 \\ \hline \end{array}$									
NEMA, ANSI $\begin{array}{ll} \\ & \begin{array}{l}600 \mathrm{~V} \text { AC } \\ 480 \mathrm{~V} \\ 240 \mathrm{~V}\end{array} \\ \end{array}$	42/96.6 50/115 65/149.5								50/115 65/149.5 85/195.5				65/149.5 75/172.5 100/230		$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$									
Installation Fixed type \mathbf{P} Draw-out type with cradle \mathbf{X} Draw-out type with cradle and shutter \mathbf{Q}	\bullet		$\stackrel{\bullet}{\bullet}$		\bullet		\bullet		\bullet		$\stackrel{\bullet}{\bullet}$		-		$\stackrel{-}{\bullet}$		$\stackrel{-}{\bullet}$							
Main circuit terminal connection Fixed type Vertical terminal Horizontal terminal Front terminal Drow-out type Vertical terminal Horizontal terminal Front terminal	$\begin{array}{\|l} \mathbf{\Delta} \\ 0 \\ \mathbf{A} \\ \mathbf{A} \\ 0 \\ \mathbf{A} \\ \hline \end{array}$		$\begin{aligned} & \mathbf{\Delta} \\ & \mathbf{O} \\ & \mathbf{\Delta} \\ & \mathbf{\Delta} \\ & \mathbf{~} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{\Delta} \\ & 0 \\ & \mathbf{\Delta} \\ & \mathbf{\Delta} \\ & 0 \\ & \mathbf{\Delta} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \mathbf{\Delta} \\ & \mathbf{~} \\ & \mathbf{4} \\ & \mathbf{n} \end{aligned}$		$\begin{array}{\|l} 0 \\ \mathbf{A} \\ \mathbf{A} \\ 0 \\ \mathbf{A} \\ \mathbf{A} \\ \hline \end{array}$		$\begin{aligned} & 0 \\ & \mathbf{\Delta} \\ & \mathbf{0} \\ & \mathbf{4} \\ & \mathbf{n} \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$		$\begin{aligned} & - \\ & - \\ & \bar{O} \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$							
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp) }}$ (kV)	12																							
Rated short time withstand current $\left(\begin{array}{l}1 \mathrm{sew})(\mathrm{kA}, \mathrm{rms})\end{array}\right.$ sec. 3 sec.	$\begin{aligned} & 65 \\ & 50 \\ & \hline \end{aligned}$								$\begin{array}{\|l} 85 \\ 65 \\ \hline \end{array}$				$\begin{array}{r} 100 \\ 85 \end{array}$		$\begin{array}{r} 120 \\ 85 \end{array}$									
Rated latching current (kA, rms)	65								85				100		120									
Total fault clearing time (s)	0.03														0.05									
Closing time Spring charging time (s) max.	$\begin{array}{\|l\|} \hline 10 \\ 0.08 \\ \hline \end{array}$																							
Dimensions(mm)																								
	360 445 460 290		360 445 460		360 60 145 20		360 445 460		466 586 460		$466{ }^{4686}$		- - -		- ${ }_{-}$-		- -							
			460290				-				-													
			290	290		290		290		-														
	290 75 15				$\begin{array}{\|l\|l\|} \hline 354 & 439 \\ \hline 460 & \\ \hline \end{array}$				$\begin{array}{l\|l} \hline 354 & 439 \\ \hline 460 & \\ \hline \end{array}$				$\begin{array}{l\|l} \hline 345 & 439 \\ \hline 460 & \\ \hline \end{array}$		$\begin{array}{l\|l} \hline 460 & 580 \\ \hline 460 & \end{array}$						- - 999			
Drow-out type			$\begin{array}{\|l\|l} \hline 460 & 580 \\ \hline \end{array}$				460				460													
	$\begin{array}{\|l\|} \hline 034 \\ \hline 460 \\ \hline 345 \\ \hline \end{array}$		345 40		34540		34540		345 40				345				375		460380					
	40				40				53		60		60											
Mass (kg) For draw-out type X	73 86		73 86				7690				79 94		105125		105125		139 176		200 260		220 285			

- Available - Not available
\square Replace the \square mark in the type number by the pole number code \quad 3-pole: $3 \quad$ 4-pole: 4
\square Replace the mark in the type number by the installation code Fixed: \mathbf{P} Draw-out with cradle: \mathbf{X} Draw-out with cradle and shutter: \mathbf{Q} O Standard A Available on request
*1 At ambient temperature of $40^{\circ} \mathrm{C}$.
*2 Rated current at standard terminal connection. See page 06/202 for other terminal connection.
*3 The 2-pole ACBs are similar to 3-pole types except that the center pole contacts and conductors are omitted
${ }_{* 5}$ If there is no phase-N protections, an IT system cannot be used for a 4 -pole breaker.
${ }^{*} 51000 \mathrm{~V}$ AC applies to IEC60947-2 and JIS C8201-2-1.
* 690V AC applies to IEC60947-2 and JIS C8201-2-1.
${ }^{* 7}$ Cannot be used for an IT distribution system.

■ Specifications, high breaking types

Frame size	1250A		1600A		2000A		1600A		2000A		2500A		3200A	
Basic type	DH12 $\square \mathrm{H} \square$		DH16 \square H■		DH20 \square H■		DH16 \square P■		DH20 \square P■		DH25 \square P■		DH30 \square P■	
No. of poles *3	3	4	3	4	3	4	3	4	3	4	3	4	3	4
Rated current (A) (Max.) IEC, EN, AS NEMA, ANSI JIS	$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \end{aligned}$		$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \end{aligned}$		$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & \hline 1600 \\ & 1600 \\ & 1600 \\ & \hline \end{aligned}$		$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \end{aligned}$		$\begin{aligned} & 3200 \\ & 3200 \\ & 3200 \\ & \hline \end{aligned}$	
Rated current of the neutral pole (A)	1250		1600		2000		1600		2000		2500		3200	
Rated primary current of overcurrent tripping device (IcT) (A) (For general feeder circuit use)	$\begin{array}{r} 200 \\ 400 \\ 800 \\ 1250 \end{array}$		1600		2000		$\begin{array}{r} 200 \\ 400 \\ 800 \\ 1250 \\ 1600 \end{array}$		2000		2500		3200	
Rated insulation voltage (U_{i}) $(\mathrm{V}, 50 / 60 \mathrm{~Hz})^{* 4}$	1000													
Rated operational voltage (U_{e})(V,50/60Hz)*5	690													
Rated breaking capacity (kA, sym.)/ Rated making current (kA, peak) IEC, EN, AS, JIS [lcs=Icu] 690V AC 440 V	$\begin{aligned} & 50 / 121 \\ & 80 / 176 \end{aligned}$						$\begin{array}{\|l\|} \hline 85 / 187 \\ 100 / 220 \end{array}$							
NEMA, ANSI 600 V AC 480 V 240 V	$\begin{array}{\|l} 42 / 96.6 \\ 65 / 149.5 \\ 80 / 184 \\ \hline \end{array}$						$\begin{array}{\|l\|} \hline 50 / 115 \\ 80 / 184 \\ 100 / 230 \end{array}$							
Installation Draw-out type with cradle \mathbf{X} Draw-out type with cradle and shutter \mathbf{Q}	0				0		\bullet		\bullet		\bullet		\bullet	
Main circuit terminal connection Drow-out type Vertical terminal Horizontal terminal Front terminal	$\begin{array}{\|l} \mathrm{O} \\ \mathbf{A} \\ - \\ \hline \end{array}$		$\underset{-}{0}$		$\left.\right\|_{-} ^{O}$		$\underset{-}{0}$		$\underset{-}{\mathrm{O}}$		$\underset{-}{0}$		$\underset{-}{0}$	
Rated impulse withstand voltage (Uimp) (kV)	12													
Rated short time withstand current $(\mathrm{lcw})(\mathrm{kA}, \mathrm{rms})$ 1 sec. 3 sec.	$\begin{aligned} & 80 \\ & 55 \\ & \hline \end{aligned}$						$\begin{array}{r} 100 \\ 75 \end{array}$							
Rated latching current (kA, rms)	65						85							
Total fault clearing time (s)	0.03													
Closing time Spring charging time (s) max.	$\begin{array}{\|l\|} \hline 10 \\ 0.08 \\ \hline \end{array}$													
Dimensions(mm) Drow-out type	354	439	354	439	354	439	460	580	460	580	631	801	460	580
	460		460		460		460		460		460		460	
	345		345		345		345		345		345		345	
	40		40		40		40		40		40		40	
Mass (kg) For draw-out type X	79	94	79	94	79	94	105	125	105	125	105	125	105	125

- Available - Not available
\square Replace the \square mark in the type number by the pole number code
3-pole: 3 4-pole: 4
\square Replace the mark in the type number by the installation code
Draw-out with cradle: X Draw-out with cradle and shutter: \mathbf{Q}
Standard $\boldsymbol{\Delta}$ Available on request
$*_{1}$ At ambient temperature of $40^{\circ} \mathrm{C}$.
*2 Rated current at standard terminal connection. See page $06 / 202$ for other terminal connection.
${ }^{* 3}$ The 2-pole ACBs are similar to 3-pole types except that the center pole contacts and conductors are omitted.
*4 1000V AC applies to IEC60947-2 and JIS C8201-2-1.
*5 690V AC applies to IEC60947-2 and JIS C8201-2-1.
- If the ACB is DH-H type or DH-P type without INST trip/MCR function, the rated breaking capacity will decrease down to the rated latching current.

Air Circuit Breakers DH series

- Appearance

(Example of draw-out type equipped with full accessories)

■ Internal construction

- Mounting

- Draw-out type

This type of ACB consists of a breaker body and a draw-out cradle. The breaker body can be moved within or removed from the draw-out cradle that is fixed in the switchboard.
There are four breaker body positions: CONNECTED, TEST, ISOLATED, and DRAW-OUT. The switchboard panel door can be kept closed in the CONNECTED, TEST, and ISOLATED positions ("shut-in three positions").
Note: On the position counter, an abbreviated form CONN is used instead of CONNECTED.

1. Connected position

Position indicator

Both the main and control circuits are connected for normal service.
2. Test position

The main circuit is isolated and the control circuits are connected. This position permits operation tests without the need for opening the switchboard panel door.
3. Isolated position

Both the main and control circuits are isolated. The switchboard panel door does not need to be opened.
4. Draw-out position

The breaker body is fully withdrawn from the draw-out cradle.

- Fixed type (standard series only)

This type of ACB has no draw-out cradle and is designed to be directly mounted in the switchboard.

■ Connection methods

- Main circuit terminals

Three(3) types of main circuit terminal arrangements are available: vertical terminals, horizontal terminals, and front connections. Different types of terminal arrangements can be specified for the line and load sides. Unless otherwise specified by the user, horizontal terminals are given to types DH08, DH12 and DH16 ACBs on both the line and load sides, and vertical terminals to DH20, DH25, DH30 and DH40. For DH40, only vertical terminals available. For High breaking series (H, P type), vertical terminals are standard and horizontal terminals are optional, and front connections are not available.
The breaker applicable maximum rated current derated depending on the connection method.

- Control circuit terminals

Control circuit terminals are front located to allow easy wiring/ access.
-The terminal blocks (for auxiliary switches, position switches, and control circuits) are positioned on the top of the ACB front panel and can be accessed from the front for wiring.
-M4 screw terminals are available.

Screw terminals

Air Circuit Breakers DH series

■ Closing method

With DH series ACB, there are two kinds of closing methods; manual charging type and motor charging type.

- Manual charging type

With manual charging type DH series ACB, the closing springs are charged manually by means of the spring charging handle. The ON/OFF operation of ACB is performed by ON/OFF buttons on the ACB

- Charging the closing springs

The closing springs are charged manually by pumping the spring charging handle.

- Closing the ACB

Pressing the ON button on the ACB closes the ACB.

- Opening the ACB

Pressing the OFF button on the ACB opens the ACB. The ACB cannot be closed as long as the OFF button is pressed.

- Motor charging type

With motor charging type DH series ACB, the closing springs are charged by a motor. The ON/OFF operation of ACB is performed remotely. The DH series ACB is also equipped with a manual charging mechanism to facilitate inspection.
and maintenance work. The electronized control circuit promises optimum control to the charging of the closing spring and ACB ON/OFF operation.

- Charging the closing springs

The closing springs are automatically charged by a motor. When the closing springs are released with the ACB turned on, they are automatically charged again by the motor in preparation for the next ON operation.

- Closing the ACB

Turn on the remote ON switch to close the ACB. As the antipumping mechanism is equipped, even if the ON switch is turned on continuously, the ACB's closing operation is performed only once. When the ACB has to be closed again, turn off the ON switch to reset the anti-pumping mechanism, turn on the ON switch after the closing springs charge completed. If the ON and OFF signals are simultaneously given to the ACB, the ON signals are ignored.

- Opening the ACB

To open the ACB remotely, use the shunt trip device (see page 06/177), or the undervoltage trip device (see page 06/178).

- Operation power supply

Rated voltage (V)	Applicable voltage range (V)	Operation power supply ratings		
	CHARGE/ OFF operation*1	Motor inrush	Motor steady-state	Closing command
	ON operation	current (peak) (A)	current (A)	current (peak) (A)
100 AC	85-110	7	1.1	0.48
110 AC	94-121	7	1.1	0.39
120 AC	102-132	7	1.1	0.37
200 AC	170-220	4	0.7	0.24
220 AC	187-242	4	0.7	0.19
240 AC	204-264	4	0.7	0.18
24 DC	18-26	14	4	1.65
48 DC	36-53	10	1.6	0.86
100 DC	75-110	6	0.8	0.39
110 DC	82-121	6	0.8	0.37
125 DC	93-138	6	0.8	0.31
200 DC	150-220	4	0.5	0.19
220 DC	165-242	4	0.5	0.18

Note: *1 For the ratings of the shunt trip device, see page 06/177.

- Step-down transformer (separately installed)
The maximum rated voltage applicable to the operation power supply is 240 V
AC. If higher voltage has to be applied, a step-down transformer is needed. The following step-down transformers are available as options.

Rated control voltage	Transformer		
	Type	Capacity	Voltage ratio
410-470V AC	TSE-30M	300VA	$450 / 220 \mathrm{~V}$
350-395V AC	TSE-30M	300VA	$380 / 220 \mathrm{~V}$

■ Tripping devices

- Continuous rating shunt trip device

The continuous-rating shunt trip device allows the ACB to be opened when an external protection relay against overcurrent or reverse power is activated.
Because of its continuous rating, the device can also be used to provide an electrical interlock to the ACB.
When an AGR-11 OCR is fitted or no OCR is fitted, continuous rating shunt trip and undervoltage trip can not be fitted to the same ACB.

- Capacitor trip device

In using with the continuous rating shunt trip device, the capacitor trip device can be used to trip the ACB within a limited period of 30 sec if large voltage drop occurs due to an power (AC) failure or short-circuit.
The rated voltage of the voltage extractor must be 48 V DC. When the continuous rating shunt trip device is used with capacitor trip device, "NO" contact of auxiliary switch of ACB should be connected in series, otherwise, the internal damage may occur.
Operation check using test jumper is not allowed.

Shunt trip rating (Continuous rating type)

Type	Rated voltage (V)	Operational voltage (V)	Peak excitation current (A)	Normal current (A)	Opening time (max.) (ms)
AVR-1C	100 AC	70-110 AC	0.48	0.32	40
	110 AC	77-121 AC	0.39	0.26	
	120 AC	84-132 AC	0.37	0.24	
	200 AC	140-220 AC	0.24	0.16	
	220 AC	154-242 AC	0.19	0.13	
	240 AC	168-264 AC	0.18	0.12	
	24 DC	16.8-26.4 DC	1.65	1.1	
	48 DC	33.6-52.8 DC	0.86	0.57	
	100 DC	70-110 DC	0.39	0.26	
	110 DC	77-121 DC	0.37	0.25	
	125 DC	87.5-137.5 DC	0.31	0.21	
	200 DC	140-220 DC	0.19	0.13	
	220 DC	154-242 DC	0.18	0.12	

Capacitor trip rating

Type	AQR-1
Rated voltage	$100-120 \mathrm{~V} \mathrm{AC}$
Operational voltage range	70 to 110% of rated voltage
Rated frequecy	$50 / 60 \mathrm{~Hz}$
Rated voltage of shunt trip used	48 V DC
Power consumption	100 VA

- - - - - - - - User Wiring
*1: Use auxiliary switch for capacitor trip

Air Circuit Breakers DH series

- Undervoltage trip device (UVT)

The undervoltage trip device (UVT) trips the ACB when the control voltage drops below the opening voltage. When the control voltage is restored to the pick-up voltage, the ACB can be closed. The pick-up voltage is fixed to 85% of the rated voltage.
The UVT consists of a tripping mechanism and an undervoltage trip control device. The trip control device is available in two types: AUR-ICS and AUR-ICD.
Type AUR-ICS provides an instantaneous trip to the ACB when the control voltage drops below the opening voltage. Type AUR-ICD provides a delayed trip to the ACB when the control voltage remains below the opening voltage for at least 500 ms .
Adding a pushbutton switch (with normally opened contacts) between terminals 24 and 30 allows the ACB to be tripped remotely.
The undervoltage trip device is builtin the ACB unit.

AC undervoltage trip control circuit

Undervoltage trip Ratings

Type of UVT Control Device	RatedVoltage$50 / 60 \mathrm{~Hz}(\mathrm{~V})$	Opening Voltage (V)	Pick-up Voltage (V)	Coil Excitation Current (A)	Power Consumption (VA)	
					Normal	Reset
AUR-1CS	100 AC	35-70	85			
AUR-1CD	110 AC	38.5-77	93.5			
	120 AC	42-84	102			
	200 AC	70-140	170			
	220 AC	77-154	187			
	240 AC	84-168	204	0.1	8	10
	380 AC	133-266	323			
	415 AC	145-290	352			
	440 AC	154-308	374			
	24 DC *	8.4-16.8	20.4			
	48 DC *	16.8-33.6	40.8			
	100 DC *	35-70	85			

[^1]
■ Overcurrent trip device (OCR)

The AGR series of overcurrent trip device (OCR) featuring high reliability and multiple protection capabilities is available for DH series. Controlled by an internal 8-bit microprocessor, the OCR provides reliable protection against overcurrent.
The OCR range is divided into three groups: L-characteristic, R-characteristic (both for general feeder) and S-characteristic (for generator protection).
Each group consists of:
Type AGR-11B : Standard OCR with adjustment dial
Type AGR-21B, 22B : Standard OCR with L.C.D.
Type AGR-31B : Enhanced OCR with backlit L.C.D.
Optional protection functions of the OCR include those against ground fault, earth leakage, undervoltage and reverse power. Pre-trip alarm function can also be installed.

- Types of tripping functions

1. Adjustable long time-delay trip function (LT)

Effectctive value (RMS) detection used to accurately read through distorted waveforms.
In addition to the standard L and S-characteristics, the Rcharacteristic is available in five types for long time-delay trip. The R-characteristic can be used to give selective tripping coordination with e.g., fuses. (See page 06/170.)

Hot-start mode (applicable to L-characteristic of AGR-21B, 31B) In the hot-start mode, when overcurrent occurs in a load state, the circuit breaker operates in a shorter amount of time as compared with operation in the cold-start mode. The hot-start mode is suitable to protect motors and wires from thermal damage. The cold-start is set at factory default.

(1) When the OCR is set to start operation at 50% of the rated current, its operating time in HOT start mode is approx. 80% of that in COLD start mode.
(2)When the OCR is set to start operation at 75% of the rated current, its operating time in HOT start mode is approx. 60% of that in COLD start mode.
(3)When the OCR is set to start operation at 100% of the rated current, its operating time in HOT start mode is approx. 20% of that in COLD start mode.

2. Adjustable short time-delay trip function (ST)

Ramp characteristic has been provided in addition to definite time-delay trip characteristic. The ramp characteristic gives coordinative protection with downstream circuit breakers or fuses properly. In type AGR-L and AGR-R OCRs, the definite time characteristic is activated when the load current is 1000% or more of the rated current [In] (500% or more of the rated current [In] for AGR-S). The definite time-delay trip characteristic and ramp characteristic are selectable with a switch. The ST trip function is set to the definite time-delay trip characteristic at factory shipment.

Ramp characteristic curve

(L or R-characteristic)

3. Adjustable instantaneous trip function (INST/MCR)

The INST trip function trips the ACB when the short circuit current exceeds the pickup current setting, irrespective of the state of the ACB.
The making current release (MCR) trips the ACB when the short circuit current exceeds the pickup current setting during closing operation. After the ACB is closed, the MCR is locked and kept inoperative.
The INST and MCR are switch-selectable for AGR-21B, 22B
and 31B. (AGR-11B is INST only, MCR is not selectable.) Note) The MCR needs the control power. If the control power is lost, the MCR provides the INST trip function only.

4. Adjustable pre-trip alarm (PTA)

The pre-trip alarm function provides an alarm signal via the alarm contact (1NO-contact) when the load current exceeding a predetermined value lasts for a predetermined time. A 2 -channel pre-trip alarm function is available for S -characteristic. This function can be used to adjust feeding to loads according to their priority.
The pre-trip alarm is automatically reset when the load current drops to the predetermined value.
Note that this function needs the control power.

5. Ground fault trip function (GF)

The peak value sensing is used (the residual current of each phase is detected).
The GF pickup current can be set between 10% and 100% of the CT rated primary current $\left[I_{C T}\right]$.
<Ramp characteristic is added>
The ramp and definite time characteristics are switch selectable. The GF trip function comes into operation with the definite time characteristic when the load current reaches 100% or more of the CT rated primary current [$\left.I_{C T}\right]$.
The GF trip function is factory set to the definite time characteristic.
When using a 3 -pole ACB in a 3 -phase, 4 -wire system, be sure to use an optional CT for neutral line. (See page 06/196.)
Note 1: The GF trip function comes usually with operation indications (LED and contact output). If you need nothing but ground fault indication without a ground fault tripping operation, specify at the time of ordering.
Note 2: Restricted and unrestricted ground fault protection REF is available as option. This enables to protect against ground fault on the line side of ACB.

6. Reverse power trip function (RPT)

(For AGR-22B and AGR-31B only)
The RPT function protects 3-phase generators running in parallel against reverse power. The RPT pickup current can be set in seven levels: 4% through 10\% of the generator rated power.
If the rated main circuit voltage exceeds 250 VAC, a stepdown power transformer is needed. When ordering the ACB, state the step-down ratio of the transformer you will use.

7. N-phase protection function (NP)

This NP function is available on 4-pole ACBs and prevents the neutral conductor from suffering damage or burnout due to overcurrent.
The NP trip pickup current can be set between 40% and 100% of the OCR rated primary current for L and Rcharacteristics or of the generator rated current for Scharacteristic.
It is factory set to a value specified at the time of ordering.
Note 1: The NP trip function comes usually with operation indications (LED and contact output). The NP trip pickup current setting is shared by the LT trip function.
Note 2: The HOT start mode is available for AGR-21B and AGR-31B. The operating time for the NP trip function is linked to that for the LT trip function.

8. Undervoltage alarm function (UV)

(For AGR-22B and AGR-31B only)
This function monitors the main circuit voltage, and gives an alarm on the LCD and an output signal via an alarm contacts when the voltage drops below the setting voltage.
The alarm is activated when the main circuit voltage drops below the setting voltage (selectable from $40 \%, 60 \%$ or 80% of the rated main circuit voltage $[\mathrm{Vn}]$), and is deactivated when the main circuit voltage rises to the recovery setting voltage (selectable from $80 \%, 85 \%, 90 \%$ or 95% of the rated main circuit voltage [Vn]).
If the rated main circuit voltage exceeds 250 VAC, a stepdown power transformer is needed. When ordering the ACB, state the step-down ratio of the transformer you will use.

Note 1: The undervoltage alarm function is disabled unless the main circuit voltage has once risen to the recovery setting voltage or higher.
Note 2: If the undervoltage alarm function is used in conjunction with the undervoltage trip device (see page 06/178), an alarm may occur after the ACB trips open depending on the alarm setting voltage.

9. Contact temperature monitoring function (OH)

(For AGR-31B only.)

The HEAT function prevents the ACB from suffering damage due to overheat.
It monitors the temperature of the ACB main contacts, and gives an alarm on the LCD and an output signal via the alarm contact (1NO-contact) when the temperature exceeds $155^{\circ} \mathrm{C}$. The alarm can be manually reset when the temperature drops to a normal temperature.
If you want to set the threshold temperature to a lower value, contact Fuji.
This function needs the control power.
Note 1: "Alarm" or "Trip" can be selected.
10. Reverse phase protection function (NS)
(For AGR-21B and AGR-31B only)
This function detects the negative-phase current occurring due to reverse phase or phase loss and prevents burnout of a motor or damage to equipment. The protection setpoint ranges from 20% to 100% of the main circuit rated current [In].

11. Zone interlock (Z)

(For AGR-22B and AGR-31B only)
The zone-selective interlock capability permits tripping of the ACB upstream of and nearest to a fault point in the shortest operating time, irrespective of the short time delay trip time setting, and minimizes thermal and mechanical damage to the power distribution line.

- NON setting and fail-safe feature

1. NON setting

Setting a trip pickup current setting dial to the NON position allows you to render the corresponding protection function inoperative.
Dials having the NON position include LT, ST, INST/MCR, and GF.
Appropriate NON setting will be a useful means for optimum selectivity.

2. Fail-safe feature

The OCR has a fail-safe mechanism in case setting dials are improperly set to the NON position.

- If the ST and INST trip pickup current setting dials are both set to NON, the fail-safe mechanism will activate the INST trip function to trip the ACB when a fault current equal to or more than 16 times the rated current $\left[I_{n}\right]$ flows through the ACB.
- If the ST and MCR trip pickup current setting dials are both set to NON, the fail safe mechanism will activate the ST delay trip function to trip the ACB when a fault current equal to or more than 10 times (5 times for generator protection) the rated current $\left[I_{n}\right]$ flows through the ACB.

- Field test or facility

Type AGR-21B/22B/31B OCRs are equipped with a field test function to verify the long time delay, short time delay, instantaneous and ground fault trip features without the need for tripping of the ACB.
To check type AGR-11B, use the type ANU-1 OCR checker (optional).

- Operation indication function

1. Indication via single contact (AGR-11B)

When the LT, ST, INST/MCR, or GF trip function is activated, an output is generated via 1 NO -contact.
The 1 NO-contact will turn off after 40 ms or more.
A self-hold circuit is needed.
2. Indication via individual contacts (AGR-21B, 22B, 31B) When the LT trip, ST trip, INST/MCR trip, GF trip, RPT, NS, REF, UVT, pre-trip alarm, or contact temperature monitoring function is activated, LCD will indicate their operation individually and output is generated via the corresponding contact.
The OCR also has a self-diagnostic feature that monitors the internal tripping circuits. If detecting any fault in the circuits, this feature turns on the system alarm indicator. The control power is needed.

Operation indications
O: Self-hold (Note 1)
X: Auto-reset
Δ : status indication

- : Not applicable

Protective characteristic	L/R-characteristic	
Function	LCD	Contact
LTENP	\bigcirc	\bigcirc
ST	\bigcirc	
INST/MCR	\bigcirc	ote 4)
GF (Ground fault)	\bigcirc	\bigcirc
OH (Contact temperature monitoring)	\bigcirc	\bigcirc
(Note 2) NS (Reverse phase)	\bigcirc	\bigcirc
REF (Line side GF)	0	0
Trip indication *1	\triangle	\triangle
RPT (Reverse power trip)	-	-
PTA (Pretrip alarm)	\times	\times
PTA2 (Pretrip alarm)	\times	\times
(Note 3) UV (Undervoltage alarm)	\bigcirc	\triangle
Spring charge indication	\triangle	\triangle
System alarm	\bigcirc	\bigcirc

Note 1: To reset the operation indication, press the button on the OCR.
Note 2: Only one function can be selected from OH, NS, REF or trip indication. Selection of two or more functions involves manual connection of their control circuits (custom configuration). Contact Fuji for details.
Note 3: Only one function can be selected from PTA2, UV or spring charge indication. Selection of two or more functions involves manual connection of their control circuits (custom configuration). Contact Fuji for details.
Note 4: Motion indication contacts are commonly used for ST and INST/MCR.
*1: A switch is used to indicate the ACB has been tripped. This switch is activated whenever the off button of the overcurrent trip device, shunt drip device or undervoltage trip device is pressed.

3. Contact ratings

3-1. Contact ratings of Trip indicator and Spring change indicator

Voltage (V)	Switch contact ratings (A)	
	Resistive load	Inductive load
250 AC	3	3
250 DC	0.1	0.1
125 DC	0.5	0.5
30 DC	3	2

3-2. Contact ratings for other contacts

Voltage 	Current (A)			
	1. Single contact	2. Individual contacts		
	Resistive load	Inductive load	Resistive load	Inductive load
250 AC	3	3	0.5	0.2
250 DC	0.3	0.15	0.27	0.04
125 DC	0.5	0.25	0.5	0.2
30 DC	5	3	2	0.7

Air Circuit Breakers DH series

■ Combination of overcurrent tripping device and indicator

Note: *1 Only one function is selectable from PAT2, UV and spring charge indicator.
If you wish to select more than one function, the control circuit will be manually linked to special model. Please contact FUJI.
*2 The GF function is not available when the CT rated primary current [Ict] is 200A or less.
*3 When the main circuit voltage exceeds 250 V , a step-down transformer is necessary.
*4 Only one function is selectable from REF, OH, NS, and trip indicator.
If you wish to select more than one function, the control circuit will be manually linked special model. Please contact FUJI.
*5 You can select a R characteristic from the following 5 protective characteristics.

$$
\begin{array}{lllll}
I^{0.02} \mathrm{~T} & \text { IT } & I^{2} T & I^{3} \mathrm{~T} & I^{4} \mathrm{~T}
\end{array}
$$

*6 Phase current, line voltage, and power can be indicated. See page 06/185 for details.
*7 Overcurrent trip device type

${ }^{* \mathrm{a}}$	Optional *a AGR-11BL-AL: Overcurrent trip device only
ex. AGR - 11BL-A	Spring charge indication: Spring charge, Trip indication: Trip indicator U: Undervoltage alarm Z: Zone interlock S: Reverse phase protection O: Contact temperature monitoring $155^{\circ} \mathrm{C}$ R: Ground fault protection on line side N : N-phase protection P: Pre-trip alarm 2

Ordering information

Specify the following:

1. Type number
2. Applied standard
3. Main circuit voltage and breaking capacity
4. Optional accessories for main device and OCR
5. Voltage of each device
6. External accessories

O:Optional

						Output indication				Undervoltage alarm	Field test function	Control power
Reverse power	N-phase protection	Gruond fault on line side	Contact temperature monitoring	Reverse phase protection	Zone interlock	Single contact	Individual contact	Spring charge indicator *1	Trip indicator *4			
RPT *3	NP	REF *4	$\mathrm{OH} * 4$	NS *4	Z					UV *1*3		
-	\bigcirc	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Not required
-	\bigcirc	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Not required
-	\bigcirc	-	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	-	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required

Note: • When AGR-11B OCR with single-contact indication is activated, the corresponding operation LED indicator is momentarily ON or OFF.
But the LED indicator is kept ON when the protection function is checked with the optional OCR checker.

- If the control power is not supplied or is lost, each function operates as follows:

LT, ST, INST, RPT	Operates normally.
GF	Operates normally.
	When the CT rated primary current [lcT] is less than
	800 A and the GF pick-up current is set to 10%, the
	GF becomes inoperative.
MCR	Operates as INST.
PTA 1-channel	Is inoperative.
LED indicator on OCRs with single-contact indication	Is momentarily on or off.
Contact output from OCRs with single-contact indication	Turns off after 40 ms or more.
Contact output from OCRs with individual contact indication	Is inoperative.
LCD	No display
Field test facility	Is inoperative.

Air Circuit Breakers DH series

■ General view

- AGR-11BL OCR (with L-characteristics)

Setting item

1. Rated current
2. Long time delay trip pickup current (continuous)
3. N-phase protection trip pickup current (continuous)
4. Long time delay/N-phase protection trip timing
5. Short time delay trip pickup current
6. Short time delay trip timing
7. Short time delay trip $\mathrm{I}^{2 \mathrm{t}}$ mode
8. Instantaneous trip pickup current
9. Ground fault trip pickup current
10. Ground fault trip timing
11. Ground fault trip $I^{2} t$ mode
12. CT rated primary current display-only field
13. Factory-set rated current display-only field

- AGR-21BL-PG OCR

Button symbols and their meanings

(S) : Press the SET button using a pointed tool such as the tip of a pen.

M : Press the MENU button.
(A) : Press the up key of the cross button.
() : Press the down key of the cross button.
(1) : Press the right key of the cross button.
(4) : Press the left key of the cross button.
[E]: Press the ENT button.

- AGR-31BL-PG OCR

3. Gives the system alarm with number on the LCD for the following abnormal function.

- Trip function fail
- MHT circuit break

Air Circuit Breakers DH series

\square Characteristics of overcurrent trip device
For general feeder circuit/L-characteristic (Type AGR-11BL, 21BL, 31BL)

- Values of [ICT] and [In] 11BL, 21BL, 31BL

Type	CT rated primary current [ICT] (A)	Rated current [In] (A)				Remarks
		$\begin{array}{ll} \hline[\text { ICT }] \\ \text { x } 0.5 \end{array}$	$\begin{aligned} & \hline \text { [ICT] } \\ & \times 0.63 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline[\mathrm{ICT}] \\ \mathrm{x} & 0.8 \end{array}$	$\begin{aligned} & \hline \text { [ICT] } \\ & \text { x } 1.0 \end{aligned}$	
DH08	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 200 \\ 400 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 250 \\ 500 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 160 \\ 320 \\ 630 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ \hline \end{array}$	There are no difference by terminal structure and safety standards
DH12	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 630 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 500 \\ 800 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 320 \\ 630 \\ 1000 \end{array}$	$\begin{aligned} & \hline 400 \\ & 800 \\ & 1250 \end{aligned}$	There are no difference by terminal structure and safety standards
DH16	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 400 \\ & 630 \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 500 \\ 800 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 320 \\ 630 \\ 1000 \end{array}$	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \end{array}$	There are no difference by terminal structure and safety standards
	1600	800	1000	1250	1600	IEC, JIS
		800	1000	1250	1600	NEMA, ANSI / Vertical terminals
		800	1000	1250	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH20	$\begin{aligned} & 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 630 \\ & 800 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & 800 \\ & 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 320 \\ 630 \\ 1000 \\ 1250 \end{array}$	$\begin{aligned} & \hline 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$	There are no difference by terminal structure and safety standards
	2000	1000	1250	1600	2000	IEC, JIS
		1000	1250	1600	2000	NEMA, ANSI / Vertical terminals
		1000	1250	1600	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH25	2500	1250	1600	2000	2500	Vertical terminals
		1250	1600	2000	2500	IEC, JIS / Front terminals
		1250	1600	2000	-	IEC, JIS / Horizontal terminals
		1250	1600	2000	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH30	3200	1600	2000	2500	3200	Vertical terminals
		1600	2000	2500	-	Horizontal terminals, Front terminals
DH40	4000	2000	2500	3200	4000	IEC, JIS
		2000	2500	3200	-	NEMA, ANSI
DH50	5000	2500	3200	4000	5000	IEC, JIS
DH60	6300	3200	4000	5000	6300	IEC, JIS
DH12H	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 200 \\ 400 \\ 630 \end{array}$	125 250 500 800	$\begin{array}{\|l\|} \hline 160 \\ 320 \\ 630 \\ 1000 \end{array}$	$\begin{aligned} & \hline 200 \\ & 400 \\ & 800 \\ & 1250 \end{aligned}$	There are no difference by terminal structure and safety standards
DH16H	1600	800	1000	1250	1600	IEC, JIS
		800	1000	1250	1600	NEMA, ANSI / Vertical terminals
		800	1000	1250	-	NEMA, ANSI / Horizontal terminals
DH20H	2000	1000	1250	1600	2000	IEC, JIS
		1000	1250	1600	2000	NEMA, ANSI / Vertical terminals
		1000	1250	1600	-	NEMA, ANSI / Horizontal terminals
DH16P	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \\ 1600 \end{array}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & 400 \\ & 630 \\ & 800 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 500 \\ & 800 \\ & 1000 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 320 \\ & 630 \\ & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$	There are no difference by terminal structure and safety standards
DH20P	2000	1000	1250	1600	2000	There are no difference by terminal structure and safety standards
DH25P	2500	1250	1600	2000	2500	Vertical terminals
		1250	1600	2000	-	Horizontal terminals
DH30P	3200	1600	2000	2500	3200	Vertical terminals
		1600	2000	2500	-	Horizontal terminals

Air Circuit Breakers DH series

Protection characteristics

Characteristics of overcurrent trip device
For general feeder circuit/R-characteristic (Type AGR-21BR, 31BR)

Protection function		Setting range *__ Default setting
Adjustable long time delay trip LT	Pick-up current $\mathrm{I}_{\mathrm{R}}(\mathrm{A})$ Time delay tr_{R} (s) Tolerance of t_{R} (\%)	 $\ln \mathrm{X}(0.8-0.85-0.9-0.95-\overline{1.0}-\mathrm{NON}), 6$ steps - Non-tripping at $\mathrm{l}_{\mathrm{R}} \mathrm{X} 1.05$ or less - Tripping between over $1.05 \mathrm{I}_{\mathrm{R}}$ and $1.2 \mathrm{k}_{\mathrm{r}}$ or less $(1-2-3-4-\underline{5}-6.3-6.8-10)$ at $300 \% \times \mathrm{Im}_{\mathrm{r}} 8$ steps $\pm 20 \%+150 \mathrm{~ms}-0 \mathrm{~ms}$
Adjustable short time delay trip ST	Pick-up current Isd (A) Tolerance of Isd (\%) Time delay tsd (ms) Relay time (ms) Resettable time (ms) Total fault clearing time (ms)	$\begin{array}{llllll} \ln X(1-1.5-2-2.5-3-4-\underline{6}-8-10-N O N), 10 \text { steps } \\ \pm 15 \% & \\ & \\ 50 & 100 & 200 & 400 & 600 & 800,6 \text { steps } \\ 25 & 75 & 175 & 375 & 575 & 775 \\ 120 & 170 & 270 & 470 & 670 & 870 \\ \hline \end{array}$
Adjustable instantaneous trip INST or MCR	Pick-up current li (A) Tolerance of li (\%)	$\begin{aligned} & \ln X(2-4-6-8-10-12-14-16-\text { NON }), 9 \text { steps } \\ & \pm 20 \% \end{aligned}$
Adjustable pre-trip alarm PTA	Pick-up current lp1 (A) Tolerance of lp1 (\%) Time delay tp1 (s) Tolerance of tp1 (\%)	$\begin{aligned} & \ln \times(0.75-0.8-0.85-0.9-\underline{0.95}-1.0), 6 \text { steps } \\ & \pm 7.5 \% \\ & (5-10-15-20-40-60-80-120-160-200) \text { at lp } 1 \text { or more, } 10 \text { steps } \\ & \pm 15 \%+100 \mathrm{~ms}-0 \mathrm{~ms} \end{aligned}$
Adjustable ground fault trip GF	Pick-up current Ig_{g} (A) Tolerance of $\lg _{g}$ (\%) Time delay t_{g} (ms) Relay time (ms) Resettable time (ms) Total fault clearing time (ms)	
Ground fault trip on line side REF	Pick-up current [$\left.l_{\text {REF }}\right]$ (A) Current setting tolerance (\%) Time-delay (s)	$\begin{aligned} & {\left[\mathrm{I}_{\mathrm{CT}}\right] \times(0.1-\underline{0.2}-0.3-0.4-0.6-0.8-1.0-\mathrm{NON}), 8 \text { steps }} \\ & \pm 20 \% \\ & \text { Inst } \end{aligned}$
Neutral phase protection function NP	Pick-up current In (A) Time delay t_{N} (s) Tolerance of t_{N} (\%)	Іст $X(0.4-0.5-0.63-0.8-1.0)$ Factory set to a user-specified value - Non-tripping at 1.05 In or less - Tripping between over 1.051 ln and 1.2ln or less Long time delay (LT) trip at 300% of IN_{N} $\pm 20 \%+150 \mathrm{~ms}-0 \mathrm{~ms}$
Reverse phase protection NS	Pick-up current [$\left[\mathrm{I}_{\mathrm{Ns}}\right]$ (A) Current setting tolerance (\%) Time-delay [tws] (s) Time-delay tolerance (\%)	$\begin{aligned} & {[\ln] \times(0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0), 9 \text { steps }} \\ & \pm 10 \% \\ & \text { At } 150 \% \text { current of }[\operatorname{lns}], 0.4-0.8-1.2-1.6-2-2.4-2.8-3.2-3.6-4,10 \text { steps } \\ & \pm 20 \%+150 \mathrm{~ms}-0 \mathrm{~ms} \end{aligned}$
Undervoltage alarm UV (AGR-31B only)	Recovery setting voltage (V) Recovery voltage tolerance (\%) Setting voltage (V) Setting voltage tolerance (\%) Time delay (s) Time delay tolerance (\%)	$\begin{aligned} & {[\mathrm{V} n] \times(0.8-\underline{0.85}-0.9-0.95), 4 \text { steps }} \\ & \pm 5 \% \\ & {[\mathrm{~V} n] \times(0.4-\underline{0.6}-0.8), 3 \text { steps }} \\ & \pm 5 \% \\ & 0.1-0.5-1-2-5-10-15-20-30-36,10 \text { steps } \\ & \pm 5 \%+100 \mathrm{~ms}-0 \mathrm{~ms} \end{aligned}$
Control power		$\left.\begin{array}{lll}100 \text { to } 120 \mathrm{~V} \mathrm{AC} \\ 200 \text { to } 240 \mathrm{~V} \mathrm{AC}\end{array}\right)$ common $\left.\begin{array}{ll}100 \text { to } 125 \mathrm{~V} \text { DC } \\ 200 \text { to } 250 \mathrm{~V} \text { DC }\end{array}\right)$ common $\left.\begin{array}{l}24 \mathrm{~V} \text { DC } \\ 48 \mathrm{~V} \text { DC }\end{array}\right)$ common
		Power consumption: 5VA

Air Circuit Breakers DH series

- Values of [Ict] and [In] 21BR, 31BR

Type	CT rated primary current [ICT] (A)	Rated current [In] (A)				Remarks
		$\begin{array}{ll} \hline[\mathrm{ICT}] \\ \mathrm{x} & 0.5 \\ \hline \end{array}$	$\begin{array}{ll} \hline[\mathrm{ICT}] \\ \mathrm{x} 0.63 \end{array}$	$\begin{array}{ll} \hline[\text { ICT] } \\ \times 0.8 \\ \hline \end{array}$	$\begin{aligned} & \hline[\mathrm{ICT}] \\ & \mathrm{x} 1.0 \end{aligned}$	
DH08	$\begin{aligned} & \hline 200 \\ & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 320 \\ & 630 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ \hline \end{array}$	There are no difference by terminal structure and safety standards
DH12	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 630 \end{array}$	$\begin{array}{\|l} 250 \\ 500 \\ 800 \end{array}$	$\begin{aligned} & 320 \\ & 630 \\ & 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \end{array}$	There are no difference by terminal structure and safety standards
DH16	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 630 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 500 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 320 \\ & 630 \\ & 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \\ \hline \end{array}$	There are no difference by terminal structure and safety standards
	1600	800	1000	1250	1600	IEC, JIS
		800	1000	1250	1600	NEMA, ANSI / Vertical terminals
		800	1000	1250	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH20	$\begin{aligned} & 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 630 \\ & 800 \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 500 \\ 800 \\ 1000 \end{array}$	$\begin{aligned} & 320 \\ & 630 \\ & 1000 \\ & 1250 \end{aligned}$	$\begin{array}{\|l\|} \hline 400 \\ 800 \\ 1250 \\ 1600 \end{array}$	There are no difference by terminal structure and safety standards
	2000	1000	1250	1600	2000	IEC, JIS
		1000	1250	1600	2000	NEMA, ANSI / Vertical terminals
		1000	1250	1600	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH25	2500	1250	1600	2000	2500	Vertical terminals
		1250	1600	2000	2500	IEC, JIS / Front terminals
		1250	1600	2000	-	IEC, JIS / Horizontal terminals
		1250	1600	2000	-	NEMA, ANSI / Horizontal terminals, Front terminals
DH30	3200	1600	2000	2500	3200	Vertical terminals
		1600	2000	2500	-	Horizontal terminals, Front terminals
DH40	4000	2000	2500	3200	4000	IEC, JIS
		2000	2500	3200	-	NEMA, ANSI
DH50	5000	2500	3200	4000	5000	IEC, JIS
DH60	6300	3200	4000	5000	6300	IEC, JIS
DH12H	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 200 \\ 400 \\ 630 \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 250 \\ 500 \\ 800 \end{array}$	$\begin{aligned} & 160 \\ & 320 \\ & 630 \\ & 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \end{array}$	There are no difference by terminal structure and safety standards
DH16H	1600	800	1000	1250	1600	IEC, JIS
		800	1000	1250	1600	NEMA, ANSI / Vertical terminals
		800	1000	1250	-	NEMA, ANSI / Horizontal terminals
DH2OH	2000	1000	1250	1600	2000	IEC, JIS
		1000	1250	1600	2000	NEMA, ANSI / Vertical terminals
		1000	1250	1600	-	NEMA, ANSI / Horizontal terminals
DH16P	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \\ 1600 \end{array}$	$\begin{aligned} & \hline 100 \\ & 200 \\ & 400 \\ & 630 \\ & 800 \end{aligned}$	$\begin{aligned} & 125 \\ & 250 \\ & 500 \\ & 800 \\ & 1000 \end{aligned}$	$\begin{aligned} & 160 \\ & 320 \\ & 630 \\ & 1000 \\ & 1250 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 400 \\ 800 \\ 1250 \\ 1600 \end{array}$	There are no difference by terminal structure and safety standards
DH20P	2000	1000	1250	1600	2000	There are no difference by terminal structure and safety standards
DH25P	2500	1250	1600	2000	2500	Vertical terminals
		1250	1600	2000	-	Horizontal terminals
DH30P	3200	1600	2000	2500	3200	Vertical terminals
		1600	2000	2500	-	Horizontal terminals

Protection characteristics

Air Circuit Breakers DH series

- Supplied accessories

- ON-OFF operation counter

The ON-OFF operation counter is a mechanical 5-digit readout that shows the number of ON-OFF operations of the ACB.
Counter readings serve as a guide for maintenance or inspection.

- Auxiliary switches

The 7PDT auxiliary switches operate during the ACB ON/ OFF operation.
Connections to the switches are made via screw terminals. The auxiliary switches for draw-out type ACBs operate in the CONNECTED and TEST positions.
The auxiliary switches for ACBs conforming to marine use rules which operate in the CONNECTED position only.

Auxiliary switch ratings

Category	For general use		
Voltage	Resistive load (A)	Inductive load (A)	$\mathrm{AC}: \cos \varnothing \geq 0.3$ $\mathrm{DC:} / \mathrm{R} \leq 0.01$
100-250V AC	5	5	
251-500V AC	5	5	
30V DC	1	1	
125-250V DC	1	1	

Notes *1: The chattering of NC-contacts due to ON/OFF operation of the ACB should be less than 20 ms .
*2: Do not supply different voltages to contacts of a switch.

- Position padlock lever

Using the position padlock lever prevents the breaker body from inadvertently being drawn out. The position padlock lever in the pulled-out position locks the breaker body in the CONNECTED, TEST, or ISOLATED position. Up to three padlocks (with 6 mm dia. hasp) can be installed.

ON-OFF button cover

An ON-OFF button cover (supplied as standard) prevents inadvertent or unauthorized operation of the ON or OFF button. It can be locked with up to three padlocks with 6 mm dia. hasp.
Padlocks are not supplied.

- Draw-out handle

- Optional accessories

- Auxiliary switches

The auxiliary switches operate during the ACB ON/OFF operation.
Connections to the switches are made via screw terminals.
The auxiliary switches for draw-out type ACBs operate in the CONNECTED and TEST positions.
The auxiliary switches for ACBs conforming to marine classification society's rules operate in the CONNECTED position only.
The auxiliary switches are available for general use and for microload.

Auxiliary switch ratings

	For general use			For microload			
Voltage	Resistive load (A)	Inductive load (A)	$\begin{aligned} & A C: \cos \varnothing \geq 0.3 \\ & D C: L / R \leq 0.01 \end{aligned}$	Resistive load (A)	Inductive load (A)	$\begin{aligned} & \text { AC: } \cos \varnothing \geq 0.6 \\ & D C: L / R \leq 0.007 \end{aligned}$	Min. applicable load
100-250V AC	5		5	0.1		0.1	5 V DC 1mA
251-500V AC	5		5	-		-	
30 V DC	1		1	0.1		0.1	
125-250V DC	1		1	-		-	

Notes 1: The chattering of NC-contacts due to ON-OFF operation of the ACB should be less than 20 ms .
Notes 2: Do not supply different voltages to contacts of a switch.

- Key lock

There are two types of keylock: "Lock-in-OFF type" which prevents the breaker from being CLOSED and "Lock-in-ON type" prevents it from being OPENED.
When the ACB is fitted with a key lock, the operator cannot operate the ACB unless using a matched key.

- Key interlock

The key interlock is a system of interlocking between ACBs, each fitted with a key lock of lock-in OFF type.

- A key must be inserted to release the lock before the ACB can be closed.
- The ACB must be opened and locked in the OFF position before the key can be removed.
By utilizing the lock-in OFF type key lock feature, and then a limited number of keys by default provides an effective and reliable interlock system. Using the same keys also allows interlocking between an ACB and other devices (such as a switchboard door). ACBs are supplied with a cylinder lock or with a provision for tyep FS-2 Castell lock (with angular movement 90° clockwise to trap key). The Castell lock is not supplied.

Example: Interlock for prevention of parallel feeding of two power supplies when a bus-tie breaker is used.

Air Circuit Breakers DH series

Optional accessories

- Mechanical interlock

Mechanical interlocks for interlocking 2 or 3 ACBs in either horizontal (Draw-out type and fixed type) or vertical (Draw-out type only) arrangements are available.
Interlocking is possible between any frame size of DH series ACB.
In conjunction with an electrical interlock, it will enhance safety and reliability of power distribution systems.

1. Horizontal type

This table shows the standard pitch between left side $A C B A$ and right side $A C B B$, or between left side $A C B B$ and right side ACB C.

		Pitch of ACB P (mm) (PC line to PC line)			
		$\begin{aligned} & \text { DH08 to DH20 } \\ & \text { DH12H to DH20H } \end{aligned}$	$\begin{aligned} & \text { DH25 to DH30 } \\ & \text { DH16P to DH30P } \end{aligned}$	DH40	$\begin{aligned} & \text { DH50 } \\ & \text { DH60 } \end{aligned}$
		3P, 4P	3P, 4P	3P, 4P	3P, 4P
DH08 to DH2O DH12H to DH2OH	3P	600, 700, 800	600, 700, 800	500, 600, 700	800, 1000, 1100
	4P	600, 700, 800, 900	700, 800, 900	600, 700, 800	900, 1000, 1100
DH25 to DH30 DH16P to DH30P	3P	600, 700, 800, 900	700, 800, 900	700, 800, 900	900, 1000, 1100
	4P	700, 800, 900, 1000	800, 900, 1000	800, 900, 1000	1000, 1100, 1200
DH40	3P	800, 900, 1000, 1100	900, 1000, 1100	800, 900, 1000	1100, 1200, 1300
	4 P	1000, 1100, 1200, 1300	1000, 1100, 1200	1000, 1100, 1200	1300, 1400
$\begin{aligned} & \text { DH50 } \\ & \text { DH60 } \end{aligned}$	3P	700, 800, 900, 1000	800, 900, 1000	700, 800, 900, 1000	1000, 1100, 1200
	4 P	1000, 1100, 1200	1000, 1100, 1200	1000, 1100, 1200	1200, 1300, 1400

When ordering, select the required pitch for P1 and P2 from the above table, and
specify the type and number of poles for $A C B A, A C B B$, and $A C B C$ if exists.

2. Vertical type

Minimum pitch (550 mm) is possible.
Specify the reguired pitch when ordering.
Maximum is 1200 mm .
Contact FUJI for the details of vertical type with 3 ACBs.

- Automatic closing spring release

This device allows the charged closing springs to be automatically released when the ACB is drawn out from the ISOLATED position to the DRAW-OUT position.
ANSI or NEMA-compliant ACBs require this option.

- Spring charge indicator

This switch can be used to indicate that the closing springs have been fully charged.
For the contact ratings of the switch, see the table 3-1 on page 06/181.

- Control circuit terminal cover

A control circuit terminal cover protects the terminal blocks for auxiliary switches, position switches, and control circuits from being accidentally touched, thus enhancing safety.

- Optional accessories

- Door flange

A door flange can be used as a decoration panel that covers the cutout on the switchboard panel, and provides IP20 protection. For IP31 protection, please specify the door flange with a gasket.
Note: Door flange cannot be specified with door interlock.

- OFF padlock

Permits the ACB to be padlocked in the OFF position. Max. three padlocks with 6 mm dia. hasp can be fitted. Padlocking is possible only when ON-OFF indicator shows OFF. When the ACB is padlocked in the OFF position, both manual and electrial closing become inoperative, but the charging of the closing spring by manual or motor is still possible.
Note: OFF padlock facility cannot be fitted with key lock or key interlock.

*: Mount IP20 door flange through 6 mounting holes and IP31 door flange through 10 mounting holes.

- Interface barrier

An interface barrier prevents a possible short-circuit due to foreign objects entering between the poles of the main circuit terminals or between the line and load ends, thus enhancing operational reliability of the ACB.
This barrier cannot be applied to ACBs that are supplied with front connections or a reverse power trip function.

- Earthing device

There is a growing demand in L.V. distribution for greater protection against electric shock particularly during periods when maintenance work is being carried out on the main busbars or cables. A safe and economical way to meet this requirement is to apply system earthing via the normal service breaker. Earthing devices on FUJI ACBs comprises; permanent parts which are factory fitted by FUJI and are mounted on the ACB chassis and body to enable the ACB to receive the portable parts. Portable parts are supplied in loose kit form and are fitted on to the ACB body by the
customer's engineer. This converts the ACB from a normal service device to an earthing device.
When the ACB is converted to the earthing device mode, the over current release and the other electrical tripping devices are automatically disabled to prevent the remote opening of the ACB.
It is recommended that the ON-OFF operating buttons be padlocked to prevent manual opening of the ACB when used in the earthing mode.
UVT function cannot be applied to the earthing device.

Air Circuit Breakers DH series

Optional accessories

- IP cover

An IP cover provides an IP55 grade of protection as required in IEC 60529. Even if the breaker body is on the ISOLATED position, IP cover can still be fitted on the ACB.

- OCR checker, type ANU-1

The OCR checker allows easy checking of the long time-delay trip, short timedelay trip, instantaneous trip, ground fault trip functions and the pre-trip alarm function of the OCR in the field.

Ratings and specifications
Power supply •100-110V AC, 50/60Hz

	or $100-240 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$ with type C plug Power consumption alkaline cells Dimensions
Mass	$101(\mathrm{~W}) \times 195(\mathrm{H}) \times 44(\mathrm{D}) \mathrm{mm}$

- Current transformer for neutral line (separately installed)

When using a 3 -pole ACB with the ground fault protection function to protect a 3-phase, 4 -wire system against ground fault, install an appropriate current transformer (CT) to the neutral line of the system. FUJI can provide this neutral line CT as an option. For the 4-pole ACB, a measuring CT instead of the neutral line CT is already built into the ACB with ground fault protection function.

Dimensions, mm
CW80-40LS
DH08, DH12, DH16
DH12H, DH16H, DH16P

Type	Rated primary current
CW80-40LS	$200,400,800,1250,1600$

Rated secondary current is 5 A .

EC160-40LS
DH20, DH25, DH30, DH40, DH50, DH60
DH20H, DH20P, DH25P, DH30P

Type	Rated primary current
EC160-40LS	$1600,2000,2500,3200,4000$,
	5000,6300

Rated secondary current is 5 A .

Air Circuit Breakers DH series

■ Optional accessories (for draw-out type)

- Main circuit safety shutters

The main circuit safety shutters automatically conceal the main circuit contacts on the draw-out cradle when the ACB is drawn out.

- The top and bottom shutters operate independently and can be separately padlocked in the closed position.
- Up to three padlocks (with 6 mm dia. hasp) can be installed on each side using padlocking unit. (Padlock not supplied)
- In the closed position, the shutters are locked to the extent that they cannot be easily unlocked by hand. They can be unlocked and held open if required for the purpose of inspection or maintenance.

- Lifter

A special lifter is available to allow easy and safe transportation or installation of the ACB. A drop prevention mechanism is standard.

ACB mounting position

*: If 190 mm is exceeded, contact FUJI.

- Control circuit safety shutter

The control circuit safety shutter covers the control circuit contacts, ensuring safety.

- Test jumper

The test jumper is a plug-in type, and allows ON-OFF tests on all the DH series ACBs with the breaker body drawn out from the draw-out cradle. The standard jumper cable is 5 m long.

Type of Lifter	Mass (kg)	W (mm)	Applicable ACBs
AWR-1F	110	700	800 to 3200A
AWR-2F	120	890	800 to 4000 A

- Breaker fixing bolts

The breaker fixing bolts hold the breaker body securely to the draw-out cradle in position. Use them if the ACB is subject to strong vibration.

- Mal-insertion prevention device

 Interchangeability exists within the DH series ACBs. Because of this feature, there is a possibility for an ACB of a different specification being placed into the draw-out cradle. Using the malinsertion prevention device eliminates such a possibility.This device is capable of distinguishing nine different breaker bodies.

- Lifting plate

Lifting plates are detachable tools that can be used to lift a breaker body out of a draw-out cradle.

Air Circuit Breakers DH series

Optional accessories (for draw-out type)

- Position switches

The position switches operate to give indication of breaker positions: CONNECTED, TEST, ISOLATED, and INSERT. There are two contact arrangements: 2PDT and 4PDT.

Type	Number of contacts	Contact arrangement			
		INSERT	ISOLATED	TEST	CONN
ALR-0110P	2PDT	0	1	1	0
ALR-0101P		0	1	0	1
ALR-0011P		0	0	1	1
ALR-0200P		0	2	0	0
ALR-0020P		0	0	2	0
ALR-0002P		0	0	0	2
ALR-1111P	4PDT	1	1	1	1
ALR-1210P		1	2	1	0
ALR-1201P		1	2	0	1
ALR-0211P		0	2	1	1
ALR-1120P		1	1	2	0
ALR-1021P		1	0	2	1
ALR-0121P		0	1	2	1
ALR-1102P		1	1	0	2
ALR-1012P		1	0	1	2
ALR-0112P		0	1	1	2
ALR-0220P		0	2	2	0
ALR-0202P		0	2	0	2
ALR-0022P		0	0	2	2
ALR-1030P		1	0	3	0
ALR-0130P		0	1	3	0
ALR-0031P		0	0	3	1
ALR-1003P		1	0	0	3
ALR-0103P		0	1	0	3
ALR-0013P		0	0	1	3
ALR-0040P		0	0	4	0
ALR-0004P		0	0	0	4

- Door interlock

The door interlock prevents the switchboard door from being opened unless the breaker body is in the ISOLATED position. When the draw-out handle is removed while the ACB is in the ISOLATED position, the interlock is released and the switchboard door can be opened.
The breaker body cannot be inserted unless the switchboard door is closed.
Contact FUJI for details.

- Step-down transformer

See page 06/176.

- Capacitor trip device

See page 06/177.

- Undervoltage trip device
 See page 06/178.

Connections to the switches are made via tab or screw type terminals.
The following table lists the available types of the switches.

Position switch operation sequence

Position switch ratings

Voltage	Resistive load (A)	Inductive load (A) $(\operatorname{COS~} \varnothing \geq 0.6, \mathrm{~L} / \mathrm{R} \leq 0.007)$
100-250V AC	11	6
250V DC	0.3	0.3
125V DC	0.6	0.6
30V DC	6	5
8V DC	10	6

Note 1: When a Door interlock is specified, a storage drawout handle is supplied.
Note 2: Door interlock can not be specified with Door flange. Note 3: Contact FUJI for the details for fitting Door Interlock with IP55 cover.

■ Applicable maximum rated current by main circuit terminal connection

Type	Standard	IEC, EN, AS, JIS			NEMA, ANSI		
	Direction	Vertical	Horizontal	Front	Vertical	Horizontal	Front
DH08		800A	800A	800A	800A	800A	800A
DH12		1250A	1250A	1250A	1250A	1250A	1250A
DH16		1600A	1600A	1600A	1600A	1540A	1570A
DH20		2000A	2000A	2000A	2000A	1670A	1830A
DH25		2500A	2430A	2500A	2500A	2230A	2430A
DH30		3200A	2790A	3150A	3200A	2700A	2890A
DH40		4000A	-	-	3700A	-	-
DH50		5000A	-	-	-	-	-
DH60		6300A	-	-	-	-	-
DH12H		1250A	1250A	-	1250A	1250A	-
DH16H		1600A	1600A	-	1600A	1540A	-
DH20H		2000A	2000A	-	2000A	1670A	-
DH16P		1600A	1600A	-	1600A	1600A	-
DH20P		2000A	2000A	-	2000A	2000A	-
DH25P		2500A	2430A	-	2500A	2230A	-
DH30P		3200A	2790A	-	3200A	2700A	-

: Standard terminal connection

■ Dielectric strength

Circuit			Withstand voltage (at $50 / 60 \mathrm{~Hz}$)		Rated Impulse	
Main circuit			Between terminals, terminal group to earth	3500 V AC for 1 minute	12kV	
000\vdots000000	Auxiliary switches	For general service	Terminal group to earth	2500 V AC for 1 minute	6kV	
		For microload	Terminal group to earth	2000V AC for 1 minute	4kV	
	Position switches		Terminal group to earth	2000V AC for 1 minute	4kV	
	Over-current release (OCR)		Terminal group to earth	2000V AC for 1 minute	4kV	
	Power supply for undervoltage/ reverse power trip function		Terminal group to earth	2500 V AC for 1 minute	6kV	
Other accessories			Terminal group to earth	2000 V AC for 1 minute	4kV	

Note: The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

■ Internal resistance and power consumption

- Standard types

Type	DH08	DH12	DH16	DH20	DH25	DH30	DH40	DH50	DH60
Rated current (A)	800	1250	1600	2000	2500	3200	4000	5000	6300
DC internal resistance per pole (m)	0.033	0.033	0.028	0.024	0.014	0.014	0.014	0.012	0.010
AC power consumption for 3 poles (W)	200	350	350	490	600	780	1060	1620	1910

- High breaking types

Type	DH12-H	DH16-H	DH20-H	DH16-P	DH20-P	DH25-P	DH30-P
Rated current (A)	1250	1600	2000	1600	2000	2500	3200
DC internal resistance per pole (m)	0.024	0.024	0.024	0.014	0.014	0.014	0.014
AC power consumption for 3 poles (W)	260	350	490	310	430	600	780

Air Circuit Breakers DH series

$■$ Derating

- Standard types

Based	Ambient	Type	DH08	DH12	DH16	DH20	DH25	DH30	DH40	DH50	DH60
Standards	temperature $\left({ }^{\circ} \mathrm{C}\right)$	Connecting bar sizes	$2 \times 50 \times 5 \mathrm{t}$	2x80x5t	2x100×5t	$3 \times 100 \times 5 \mathrm{t}$	2x100x10t	$3 \times 100 \times 10 \mathrm{t}$	$4 \times 150 \times 6 \mathrm{t}$	3x200x10t	$4 \times 200 \times 10 \mathrm{t}$
IEC60947-2EN 60947-2AS3947.2JIS C8201-2-1	40 (Standard ambient temperature)		800	1250	1600	2000	2500	3200	4000	5000	6300
	45		800	1250	1600	2000	2500	3200	4000	5000	6300
	50		800	1250	1600	1900	2500	3130	4000	4950	6000
	55		800	1200	1540	1820	2500	2990	3940	4710	5680
	60		800	1150	1460	1740	2400	2850	3760	4450	5370
NEMA, SG-3ANSI C37.13	40 (Standard ambient temperature)		800	1250	1540	2000	2500	3200	3700	-	-
	45		800	1190	1470	1960	2500	3010	3580	-	-
	50		800	1130	1390	1860	2440	2860	3470	-	-
	55		790	1070	1310	1750	2300	2690	3350	-	-
	60		740	1000	1230	1640	2150	2520	3140	-	-

Note: The values are applicable for both Draw-out type and Fixed type.
The values of DH08 to DH16 are for horizontal terminals on both line and load side.
The values of DH20 to DH40 are for vertical terminals on both line and load side.
Above figures are subject to the design of the enclosure and rating of busbar.

- Higt breaking types

Based	Ambient	Type	DH12-H	DH16-H	DH20-H	DH16-P	DH20-P	DH25-P	DH30-P
Standards	temperature $\left({ }^{\circ} \mathrm{C}\right)$	Connecting bar sizes	2x80x5t	2x100x5t	3x100×5t	2x100×5t	3x100x5t	2x100x10t	$3 \times 100 \times 10 \mathrm{t}$
$\begin{aligned} & \text { IEC60947-2 } \\ & \text { EN 60947-2 } \\ & \text { AS3947.2 } \end{aligned}$	40 (Standard ambienttemperature)		1250	1600	2000	1600	2000	2500	3200
	45		1250	1600	2000	1600	2000	2500	3200
	50		1250	1600	1900	1600	2000	2500	3200
	55		1250	1600	1820	1600	2000	2500	2990
	60		1250	1550	1740	1600	2000	2400	2850
NEMA, SG-3 ANSI C37.13	$40 \begin{array}{c}\text { (Standard ambient } \\ \text { temperature) }\end{array}$		*	1600	2000	*	*	2500	3200
	45		*	1600	1960	*	*	2500	3010
	50		*	1600	1860	*	*	2440	2860
	55		*	1510	1750	*	*	2300	2690
	60		*	1420	1640	*	*	2150	2520

[^2]
■ Operation Environments and recommendation for busbars connection

- Standard environment

The standard environment for ACBs is as follows:

Ambient temperature	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ The average temperature for 24 hours must not exceed $35^{\circ} \mathrm{C}$.
Relative humidity	45% to 85%
Attitude	Below 2000 m
Atmosphere	Excessive water vapor, oil vapor, smoke, dust, or corrosive gases must not exist. Sudden change in temperature, condensation, or icing must not occur.

- Special environment

Tropicalization (Fungus and moisture treatment) Specify this treatment when the ACB is used under hightemperature and high-humidity conditions.
Conditions: Max. permissible ambient temperature $60^{\circ} \mathrm{C}$ Max. permissible humidity 95% rel. No condensation

Cold climate treatment

Specify this treatment when the ACB is used in cold areas. Conditions: Min. permissible storage temperature $-40^{\circ} \mathrm{C}$ Min. permissible operating temperature $-25^{\circ} \mathrm{C}$ No condensation

Anti-corrosion treatment

Specify this treatment when the ACB is used in a corrosive atmosphere.
Contact FUJI for details.

■ Recommendation busbars connection

The busbars to the ACB should be firmly supported near the ACB terminal. Fault current flow through the busbars develops a large electromagnetic force between the busbars, and the support must be strong enough to withstand such forces. The ACB should not be relied on as a single support. The busbar support should be made of high quality insulator. Secure sufficient insulation distance (creeping distance above the busbar support, in particular).

The maximum distance of the connection point of ACB to the first busbar support

Short-circuit current (kA)	30	50	65	80	100	120	
Distance L (mm)	Type DH08 to 20, DH12-H to 20-H	300	250	150	150	-	-
	Type DH25 to 40, DH16-P to 30-P	350	300	250	150	150	-
	Type DH50, DH60	350	300	250	150	150	150

Air Circuit Breakers DH series

- Dimensions, mm
- Drow-out types

DH08, DH12, DH16, DH20
DH12-H, DH16-H, DH20-H

Terminal size

Type	t_{1}	t_{2}	t_{3}	W
DH08	10	10	15	17.5
DH12	10	10	15	17.5
DH16	20	15	25	22.5
DH20	20	15	25	-
DH12-H	20	15	-	-
DH16-H	20	15	-	-
DH20-H	20	15	-	-

Air Circuit Breakers DH series

- Dimensions, mm

- Fixed types

DH08, DH12, DH16, DH20

Terminal size

Type	t_{1}	t_{2}	t_{3}	W
DH08	10	10	15	17.5
DH12	10	10	15	17.5
DH16	20	15	25	22.5
DH20	20	15	25	-

Panel cutout

Mounting holes
*1: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 06/195.

- N represents the neutral pole of 4 -pole ACBs.

Air Circuit Breakers DH series

- Dimensions, mm

- Drow-out types

DH25, DH30
DH16-P, DH20-P, DH25-P, DH30-P
E : Front panel center line

Air Circuit Breakers

 DH series
- Dimensions, mm

- Fixed types

DH25, DH30

*1: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 06/195.

- N represents the neutral pole of 4-pole ACBs.

Air Circuit Breakers DH series

■ Dimensions, mm

- Drow-out types

DH40

R : Front panel center line

*1: Panel cut should be 339 mm not 335 mm when the door
flange is used. Refer to page 06/195.
*2: Conductors including connecting bolts should be separated min-7mm from Draw-out arm.

- N represents the neutral pole of 4 -pole ACBs .

Air Circuit Breakers DH series

- Dimensions, mm
- Drow-out types

DH50, DH60

\mathcal{E} : Front panel center line

- N represents the neutral pole of 4 -pole ACBs .

Air Circuit Breakers DH series

■ Wiring diagrams (With AGR-11B OCR)

Main circuit	$\begin{array}{c\|} \hline \text { CT for } \\ \text { neutral line } \end{array}$	Operation	Operation circuit	Continuously-rated shunt trip

Terminal description

Check OCR voltage before connecting.
02 [22]Control power supply $100-240 \mathrm{~V}$ AC, $100-250 \mathrm{~V}$ DC, 24 V DC, 48 V DC
12 Operation switch, common
03 ON switch
05 Operation indication terminal, common
15 Single-contact indication
17 Trip indication
27 Spring charge indicator
10.20Continuously-rated shunt trip

19 Separate CT for neutral line (k)
29 Separate CT for neutral line (I)
0818 28 UVT power supply
09UVT power supply common

UVT power supply

Term. No.	AC 100 V unit	AC 200V unit	AC 400V unit
$08-090$	100 V	200 V	380 V
$18-09$	110 V	220 V	415 V
$28-09$	120 V	240 V	440 V

Symbols for accessories
CT1-CT3 : Power CTs
S1-S3 :Current sensors
M : Charging motor
LRC : Latch release coil
MHT : Magnetic Hold Trigger
\leftarrow Isolating terminal connector (for draw-out type)
\& Manual connector
--- User wiring
--(x)-- Relay or indicator lamp
*1: Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur.
*2: See page $06 / 177$ for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
*3: For motor split circuit, terminals 02, 22 and 03, 07 are used for charging and closing operation respectively. (Please specify when ordering)
*4: Refer to page 06/178 (short pulse only)

Undervoltage trip \quad Position switches $\quad \square$	Auxiliary switches

UVT control circuit

Air Circuit Breakers DH series

■ Wiring diagrams (With AGR-21B OCR)

Main circuit	CT for neutral line	Control power	Operation	Motor charging/ Operation circuit
Continuously-rated shunt trip				

Check OCR voltage before connecting.
01|21 Control power supply 200 - 240V AC, 200 - 250V DC, 48V DC
01|11 Control power supply 100 - 120V AC
11 21 Control power supply 100-125V AC, 24 V DC
02 22 Control power supply 100-240V AC, 100 - 250 V DC, 24 V DC, 48 V DC
12 Operation switch, common
03 ON switch
05 Operation indication terminal, common
15 LT trip indication
25 ST, INST trip indication
06 PTA indication
16 GF trip indication
26 System alarm indication
17 REF, NS or trip indication
27 PTA2, UV or spring charge indication
10|20 Continuously-rated shunt trip
19 Separate CT for neutral line (k)
29 Separate CT for neutral line (I)
081828 UVT power supply
09 UVT power supply common
35 Separate CT for REF (k)
36 Separate CT for REF (I)
4142 Communication line

UVT power supply

Term. No.	100 V AC unit	200 V AC unit	400 V AC unit
$08-09$	100 V	200 V	380 V
$18-09$	110 V	220 V	415 V
$28-09$	120 V	240 V	440 V

Symbols for accessories

CT1-CT3 : Power CTs
*1: Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur
*2: See page 06/177 for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
*3: For motor split circuit, terminals 02,22 and 03,07 are used for charging and closing operation respectively. (Please specify when ordering)
*4: Refer to page 06/178 (short pulse only)

Designation of terminals for auxiliary and position switches

```
# 艺 1: Common
    2: b-contact
    4: a-contact
    _1:Auxiliary switch
    2: Position switch (for CONNECTED)
    3: Position switch (for TEST)
    4: Position switch (for ISOLATED)
    5: Position switch (for INSERT)
        1-0:Switch numbers
```

 A, B, C: Auxiliary switches for microload
 CONNECTED position : 121-124 ON
 121-122 OFF
 TEST position :131-134 ON
 131-132 OFF
 ISOLATED position : 141-144 ON
INSERT position :151-142 OF
151-154 ON
151-152 OFF

For operation sequence of position switches, see page 06/198.

(Standard 7PDT + optional 3PDT arrangement)

111	211	311	411	511	611	711	811	911	011
11	21	31	41	51	6	71			

| 112 | 212 | 312 | 412 | 512 | 612 | 712 | 812 | 912 | 012 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(Standard 7PDT arrangement)

111	211	311	411	511	611	711
1	21	31	4	51		

| 114 | 214 | 314 | 414 | 514 | 614 | 714 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 112 | 212 | 312 | 42 | 512 | 612 | 712 |

| 112 | 212 | 312 | 412 | 512 | 612 | 712 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If the ground fault protection on the line side or communication function is incorporated, control circuit terminals are of manual connection type.

Air Circuit Breakers DH series

- Wiring diagrams (With AGR-22B, 31B OCR)

Main circuit	Main circuit voltage for RPT and Monitoring	Control power	Operation	Motor charging Operation circuit	Continuously-rated shunt trip

Check OCR voltage before connecting.
01|21.Control power supply 200-240V AC, 200-250V DC, 48V DC
01|11Control power supply 100-120V AC
11|21 Control power supply 100-125V AC, 24V DC
02 22. Control power supply 100-240V AC, 100-250V DC, 24V DC, 48VDC
12 Operation switch, common
03 ON switch
05 Operation indication terminal, common
15 LT trip indication
25 ST, INST trip indication
06 PTA indication
16 GF trip indication
26 System alarm indication
17 REF, NS or trip indication
27 PTA2, UV or spring charge indication
10 20 Continuously-rated shunt trip
19 Separate CT for neutral line (k)
29 Separate CT for neutral line (I)
08 | 18 U UVT power supply
09 UVT power supply common
35 Separate CT for REF (k)
36 Separate CT for REF (I)
41/42 Communication line
UVT power supply

Term. No.	100 V AC unit	200 V AC unit	400 V AC unit
$08-09$	100 V	200 V	380 V
$18-09$	110 V	220 V	415 V
$28-09$	120 V	240 V	440 V

Symbols for accessories

CT1 - CT3 : Power CTs
S1-S3 : Current sensors
M : Charging motor
LRC : Latch release coil
MHT : Magnetic Hold Trigger
-(- Isolating terminal connector
(for draw-out type)
\Perp Manual connector
---- User wiring
--®)-- Relay or indicator lamp
*1: Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur
*2: See page 06/177 for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
*3: For motor split circuit, terminals 02, 22 and 03, 07 are used for charging and closing operation respectively. (Please specify when ordering)
*4: Refer to page 06/178 (short pulse only)

Undervoltage trip Position switches $\quad \square$	Auxiliary switches

$\stackrel{\star}{\top} \stackrel{\star}{L}$ 1: Common
2: b-contact
4: a-contact
1: Auxiliary switch
2: Position switch (for CONNECTED)
3: Position switch (for TEST)
4: Position switch (for ISOLATED)
5: Position switch (for INSERT)
1-0: Switch numbers
A, B, C: Auxiliary switches for microload

CONNECTED position $:$	$121-124 \mathrm{ON}$
	$121-122 \mathrm{OFF}$
TEST position	$: 131-134$ ON
	$131-132 \mathrm{OFF}$
ISOLATED position	$: 141-144 \mathrm{ON}$
	$141-142 \mathrm{OFF}$
INSERT position	$: 151-154 \mathrm{ON}$
	$151-152 \mathrm{OFF}$

For operation sequence of
position switches, see page 06/198.

- Position switches				
Top	151	141	131	121
Middle	154	144	134	124
Bottom	152	142	132	122
Top	131	121		
Middle	134	124		
Bottom	132	122		

If the ground fault protection is incorporated and a separate current transformer for neutral line is used, or any one of ground fault protection on the line side zone interlock, external display or communication function is incorporated, control circuit terminals are of manual connection type.

[^0]: *1: Available for type AGR-22BS, 31BS.
 ${ }^{*}$: Available for type AGR-22B, 31B OCR

[^1]: *Available soon. Contact Fuji for the details.

[^2]: Note: The values are for vertical terminals on both line and load side.
 Above figures are subject to the design of the enclosure and rating of busbar.

 * Contact FUJI for details.

